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Monte Carlo methods have become popular for obtaining solutions to global op-
timization problems. One such Monte Carlo optimization technique is simulated an-
nealing (SA). Typically in SA the parameters of the search are deterraipedri.

Using an aggregated, tumped version of SA's associated Markov chain and the
concept of expected hitting time, we adjust the search parameters dynamically using
information gained from the SA search process. We present an algorithm that varies
the SA search parameters dynamically, and show that, on average, dynamic adjust-
ment of the parameters attains better solutions on a set of test problems than those
attained with a logarithmic cooling scheduleg 1998 Academic Press

1. INTRODUCTION

Researchers in mathematics, engineering, and the sciences frequently encounter
optimization problems of such magnitude that total enumeration of the state space c
plication of deterministic algorithms is computationally impractical. Because of the siz
these problems, Monte Carlo methods—methods that employ some aspect of randomr
are used to search for extrema of the objective function. The Monte Carlo optimize
technique that we will emphasize is simulated annealing (SA). SA is defined by se
parameters that are typically determirgegriori. Without knowledge of the behavior of the
function being analyzed, poor selection of the search parameters can lead to a poor sc
or to a prohibitive computational effort in attaining a solution.

Our solution to determining the search parameters is to do so dynamically using i
mation obtained during the search process by perturbing the transition probability m
associated with the underlying Markov chain. Our contributions include an algorithm t
on average, attains better solutions to nonlinear multimodal global optimization proble
We have tested the algorithm on established test problems from the literature to determi
viability of the method. The algorithm relies on the transition probability matrix associa
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264 MOREY, SCALES, AND VAN VLECK

with the Markov chain underlying SA. We give conditions for which the SA Markov chail
is lumpable. Our criterion for dynamically adjusting the search parameters éxpleeted
hitting time

This paper is organized as follows. Section 2 provides background on SA and a diagnc
tool, the expected hitting time, that we use to adjust the search parameters. Section 3 (
background theory on the underlying Markov chain, its lumpability, and one set of conditic
for which we can analytically calculate expected hitting time. Section 4 contains theoreti
results in our application of expected hitting time to the lumped Markov chain. In Section
we present our algorithm using the lumped model and indicate the relationship betw
this model and the model that uses the whole state space. Section 6 contains our nume
results, and Section 7 has our conclusions and areas requiring further study.

2. BACKGROUND

Simulated annealing (SA) was introduced in [16] as a means of solving large combing
rial optimization problems. A scalar valued objective functiors defined over a suitable
finite state spac&={1, 2, ..., n}, where eacls € S corresponds to a feasible solution of
the optimization problem. Typically we want to minimize the objective functibnfor
each pointj, in the domain, define a neighborhodd(i), of i. Define|N(i)| to be the
number of states i (i).

Itis convenient to think of the SA algorithm acting on a single particle moving thr&.igh
A sequence of states develops by randomly choosing a starting shée®t a statej € N (i),
is selected at random. If(j) is less than or equal tb(i), then the particle moves to state
j and the process is continued.flfj) is greater tharf (i), then the move tq is accepted
with probability exp[ f (i) — f(]))/c], wherec is a parameter (the temperature). The hear
of SA is the move criterion expf (i) — f(j))/c], where f (j) > f (i) and was originally
proposed in [18] as a means of simulating the equilibration of a gas in a heat bath. W
c is sufficiently large (analogous to the gas in the heat bath being heated to a very |
temperature), virtually every move will be accepted, including uphill moves; this allows tl
particle to escape from local minima. Asdecreases, the chances of accepting an uphi
move decrease so that at a low valuecothe particle will be trapped in a minimum. A
cooling schedulés a specification o€ as a function of time. It has been shown [10, 13]
that, given an ideal cooling schedule that decremeras well as determines how many
moves to make at each valuemthe process will converge to the globally optimal solution
with probability 1. But such an ideal schedule would require an impractical amount
computation.

Mathematically, SA can be viewed as a discrete time nonstationary Markov chain. T
underlying transition probability matrix associated with the stationary (i&x&RA Markov
chain has the following transition probabilities fogiven [1]:
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The elementgy; give the probability of a transition to stajegiven that the process is in
statei.

In the application of SA, many factors affect the algorithm’s performance. Some of th
factors have to do with the cooling schedule, and some with the neighborhood structur
To reduce the time required to reach a good (although not necessarily optimal) solu
cooling schedules have received much attention [1, 3, 4, 10, 13, 20, 28].

Neighborhood structure is made up of two components. The first involves the met
for generating the next statg, to which a move is proposed from the current stat&he
second component is the cardinality of the Bk{). Both the generation of a neighbor
and neighborhood size have been addressed by various researchers [7, 11, 33, 34]. U
the neighborhood structure is determirggbriori, although in [33] and [34] it is done
using some information gained from the search. Yet, because of the size of the under
stochastic matrix, use of the matrix itself for gaining information about the search proc
is typically avoided.

We refer to the cooling schedule and neighborhood structure ae#reh parameters
Our goal is to adjust these parameters dynamically to accelerate the convergence «
algorithm to the set of globally optimal solutions. We want to do this witheygtriori
knowledge of the function being studied, aside from variable constraints. The tool we
is theexpected hitting time

Shonkwiler and Van Vleck [26] provide a concept of convergence that, given the Mar
chain associated with a Monte Carlo search process, determines the expected time to
a goal state, which in our case is a global minimund. dienotes the random variable equa
to the first timet that the state of the search process reaches a goal state, then the exg
hitting time (EHT) is given by

E@) =) tPro =1, 2)

t=1

where P9 =t),t=1,2,..., is the probability density function fo#. Suppose thaP,
called thedeleted transition probability matrj)s the submatrix that results from the dele:
tion of the rows and columns d® that correspond to the states in which global minim
occur. Defing S| to be the cardinality of the set of all stat& A formula for the EHT (see
[26]) is

o0
EHT=1+&3<Z l5‘>1, ®)
t=0

wheredy, a vector of lengthS| — 1, is the initial probability distribution on the stateskn
andlis an|S| — 1 length vector of ones. Because of the difficulty in evaluating (3) for lart
P, Shonkwiler and Van Vleck provide an estimate for the expected hitting time. bet
the maximal eigenvalue @?. Let x be a right eigenvector d® associated witlh, wherey
has been normalized such that its inner product with the left eigenvector (which has |
normalized to be a probability vector) is 1. If we define the paransesr

>

S= T (4)
0

X

>

then the expected hitting time, for a stationary, single process search, can be approxir
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by

g -t 1 (5)

while for independent identical processes (IIP), thatrigarallel processes, the expected
hitting time is approximated by

1 1
= o () ©

The difficulty in using the estimate (5) or (6) is the need to calculate left and rig
eigenvectors oP. In general, working with the underlying Markov matrix is unrealistic
given its|S| x | S| dimension. In [4] a lumped model of the SA Markov chain is develope
using theory that can be found in [15]. Their criterion for designing an annealing sched
is based on thermodynamic considerations; the temperature is decreased in such &
as to minimize entropy production. The equation governing the temperature decrease
be expressed in terms of the relaxation rate of the Markov chain, which they estim
from the lumped model. In the most general sense, lumping a Markov chain invol
aggregating states into megastates. The result of the lumping is a Markov chain givir
coarse analog of the full chain. In this sense our use of lumping is an example of a ir
general class of methods known in operations research as aggregation and disaggrec
techniques [23]. However, our strategy is not simply to reduce the size of the origil
optimization problem, but rather to use lumping as a means of estimating the expe
hitting time of the full problem. In this sense our approach is rather different from stands
aggregation/disaggregation techniques.

Typically, the full chain cannot be lumped arbitrarily without losing the Markov property
but given certain conditions, and matriddsandV defined in Section 3, the transition
probability matrixP can be lumped td. using the transformation [15]

L=UPV. (7)

We refer to the underlying Markov chain as tétate space chaiand the lumped chain as
theenergy space chajmvhere energy is meant to denote the value of the objective functio
The lumping in [4]is a lumping by energies, i.e., states with similar energies are aggregs
in the lumped model.

We conclude this section with notation and some of the assumptions that we use throi
out the remainder of this paper. We assume that the transition probability nfatirgs
beenorderefll, 2, ..., |S}suchthatf (1) < f(2) < --- < f(|]]). We also assume that the
stationary matrixP, is ergodic. The deleted transition probability matrix associated Rith
is P. The lumped version is and its associated deleted transition probability matrix.is
The expected hitting time calculated using (3) Pois denoted byEp while that associated
with L is denoted byE, . The values using the estimate of the expected hitting time in (&
are denoted b p andE, . Although it is possible to go fromat stept toi att + 1, for
the following definitions, and throughout the paper, we assiugn (i) for the purpose of
generating states to which a move is proposed froithe vector of ones is denoted by
and the length ot will be clear from the context.
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3. ALGORITHM

Our primary goal in developing the algorithm was to provide a robust approach, cap.
of attaining an optimal solution with revpriori knowledge of the function being optimized
other than variable constraints. The algorithm automates the feedback loop associatet
typical implementations of SA; that is, rather than run the SA several times to detern
appropriate choices afandN, the algorithm does so automatically. In addition, as we wi
see there is some theoretical justification for our choiaeasfdN. The top-level algorithm
involves augmenting a search process such as SA with a diagnostic on the efficiency ¢
search that allows one to adjust the search parameters.

ToPLEVEL ALGORITHM

1. Given a fixed value of the cooling parameter and a structure for the neighbors of
states € Sbegin thesearchprocess.

2. Gather information during the search process including function values and ne
borhood structure tapproximate the Markov chain.

3. Using the information found during the search andiagnostic that predicts an
acceleration in the search process, choose new valuesnaf the neighborhood structure.

This is a simple example of a feedback loop that uses the previously sampled stat
determine values af and the neighborhood structure that are predicted to converge to
optimum value faster. Our goal is to come up with a diagnostic that is efficient, eas)
implement, and a good predictor. What we propose is to use the EHT of a lumped ver
of the approximate Markov chain we have constructed through sampling. We will ti
compare the lumped EHT for the current valuescadnd neighborhood structure with
different values ot and different neighborhood structure.

Diagnostic. 1. Given pairs of function values and states and a neighborhood struct
build lumped Markov chains for different valuesoénd neighborhood structure.

2. Determine the lumped EHT for different values@ind neighborhood structure using
(3), with L substituted forP, (4), and (5) and an eigendecompositionLofor using (3),
with L substituted fo®, directly by solving the linear systeah — L)x = 1.

3. Choose a new and neighborhood structure by selecting the one with the minimt
value of lumped EHT.

In our implementation we used uniform neighborhood siteand the following simple
method for determining the updatedndN. Using increments fazandN, scandsN, res-
pectively, we calculat&, so that we have nine two-tuplgg.+ 5c, N), (c+8c, N —§N),
(c+8c, N+8N), (c, N—=6N), (c, N), (c, N+5N), (c—é8c, N—8N), (c—éc, N), and
(c—38c, N +8N). This list can evidently be expanded for different valueé.@alculating
E_ for the nine two-tuples has the effect of performing a local search ofcti¢) surface
to find the point that minimizeE, . The minimum value obtained f& during this process
gives us(c, N) for the nextk iterations of the SA search.

We have formed. by sampling along the search trajectory, considering the current st
and all of its neighbors, and have updatedind the eight related forms df using an
insertion sort. As we explain in more detail in the next sectioh, i§ anm by m matrix,
then the firstn — 1 states correspond to the— 1 lowest function values encountered alon
our search trajectory, while the remaining state is an aggregate of all those states with h
function values. The only entries that are difficult to keep track df ifsee (1) and (8))
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are the transition probabilities from any of the finst- 1 states to the aggregated state. We
accomplish this by updating the transition probabilities to the aggregated state as new s
are encountered. Once our sampling is complete, we folmy deleting the first row and
column ofL.

4. THE SA MARKOV CHAIN

Given our ordering and a uniform neighborhood assumpfiba, | S| — 1, the transition
probability matrix has the structure:

NS Gy Gu2 913 Ouis
1 Zi=2 N N N N
1 N-1 _ US| % G
N N Zj:S N N
P= 1 1 i .. : . 8
N N : : (8)
: : 2 _ 9s-us  Ys-is
. N N N
1 1
N N 0

We call this matrix theanonical formof the SA transition probability matrix. We can make
any SA problem fit the canonical form by adjustihgand by makingp;; =0 for those
one-step transitions that are not permitted. The deleted transition probability nitisx,
simply the matrixP in (8) with the first row and first column deleted.

Remark 4.1. Not all of the structural information o and P is readily evident from
the form of the matrices. K> j > i, p;; #0, andpi # 0, thenp;; > pi. Additionally, if
k<j<i, pji #0, andpy # 0, thenp;; > py. Finally, pij =0« p;; =0.

Before we present our results on lumpability, we provide definitions and theorems fr
[15]. Assume that we want to lump the SA Markov chain with respect to the partitic
A={A1,Az ..., An},m<|S. For our purposesn < |S|. Let gia; = ZkeAj pik; that is,
gia; isthe sum of the transition probabilities froro the states in lum@ ;. The nexttheorem
gives the conditions under which a Markov chain can be lumped while guaranteeing 1
the Markov property is preserved.

THEOREM4.1 [15,Theoren6.3.2]. A necessary and sufficient condition for a Markov
chain to be lumpable with respect to a partitidn={A1, A, ..., Am} is that for every
pair of setsA; andAj, dka, is the same for every statgis A;.

The condition given in Theorem 4.1 is referred to asrtve sumcriterion [6].

DEFINITION 4.1. LetU be them x |S| matrix whoseith row is a uniform probability
vector over the states iy, and 0 otherwise. Le¥ be the|S| x m matrix such that;j =1
if s € Aj, and O otherwise.

If P is lumpable with respect to the partitiéyy the lumped chainl_, is obtained from
the transformation

L=UPYV, ()]

with transition probabilitied ;; [2, 15].
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THEOREM 4.2 [15, Theorem6.3.4]. If P is the transition matrix of a chain lumpable
with respect to the partitioA, and if the matrices U and V are defined as in Definitdoh
with respect to this partitiorthen

VUPV = PV. (10)

THEOREM 4.3 [15, Theorem6.3.5]. If P, A, U, and V are as in Theorem.2, then
condition(10) is equivalent to lumpability.

Let n; be the number of states in the partitién, and lets,5 denote thekth state in
partitionA;, that is, statey is a member of the aggregated state With these definitions
and the background we have presented from [15], we can show that the lumping cann
done arbitrarily if the lumped chain is to maintain the Markov property.

THEOREM 4.4. Given the state-space transition probability matrix P associated wi
an SA problem with full neighborhood sjzbe Markov chain is lumpable with respect to
the partition

A={A1, A, ..., An} (11)
if and only if
Aj={sip, %4>St =1,2,...,m=1, (12)
where
f(sa) = f(ska) foralli,keA;. (13)

Proof. SupposeP is lumpable with respect to the partitioh. By Theorem (4.3),
VUPV=PV.Leti, j € A«. Lete be the unit vector of lengttg| with 1 in thei th position,
lete; be a unit vector of the same length with 1 in ftie position, and legy be a unit vector of
lengthmwith 1 in thekth position. The®'VUPV=¢e"PV = glUPV=¢"PV = ¢]L =
g'PV.Similarly,gf L = PV.Henceg' PV = e[ PV. PartitionV inthe formV = (v, v,
..., Vm), and choose arbitraye {1, 2, ..., m— 1}. Thene' Pvs= ejT Pvs, wherePvg has
the effect of summing the probabilities I associated with the states in lundp. The
equationg’ Pvs = ejT Pvs requires that the sums in rowsand j be the same for lumpgs.
Recalling the structure d? given in Remark 4.1, we see that this means that lioarsd j
are the same element-wise. Therefdrés) = f (s;) for alli, j € Ai. Conversely, suppose
Ac={s1a, A0 - Swad, 1 =1,2,...,m—=1,wheref (s) = f(s)) foralli, j € Ax. By
the structure of the matrix, the rows for the state#\jnare the same. The result follows
directly from Theorem 4.1m

Theorem 4.4 allows us to lump the chain by energy level (or function value in our analc
as long as the state that corresponds to the minimum function value is the only state i
first lump. More precisely, if we wanh lumps, then the firstn — 1 lumps must satisfy
fH=<f@=<--- <f(m-121), while the remaining states can all be lumped into sta
Anm, aslong asf(j)> f(i), j € Am, i ¢ An. For the full neighborhood size case, we ca
have 2<m < |S| and still maintain the Markov property. On the other hand, the conditio
necessary for lumping a chain with other than full neighborhood size do not exist in gen
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as can be seen from Theorem 4.1. However, in our numerical experiments we will fc
an aggregated transition probabity mattixand associated aggregated deleted transitio
probabity matrix. by putting them — 1 states with lowest function values into aggregatec
statesAy, ..., An_1 and the remaining states into aggregated state

5. THEORETICAL RESULTS

We begin this section with theorems relating the deleted transition probability matr
P, to the lumped matrix.. Recall thatP is derived from the transition probability matrix,
P, by deleting the first row and column frof. The matrixL is similarly derived from
the lumped matrixL. Using the results we obtain on the relationship betwBeand L
along with results on the inverses of certdamatrices, we demonstrate the relationships
between the expected hitting time for the state space model and the expected hitting tim
the lumped model for the full neighborhood size case and the other than full neighborh
size case. As before, the state space matiig|is | S|, while the lumped matrix isn x m.

Let Ep andE_ be the expected hitting times obtained using (3) for the state space mo
and the lumped model, respectively. It andE, be the estimated expected hitting times
obtained using (5) for the state space model and the lumped model, respectively.

DerINITION 5.1. If P is lumpable with respect to the partitidn={A1, Ay, ..., Amn},
and ifU andV are as defined in Definition 4.1, thenlif=U PV, P is lumpable toL.

Remark 5.1. From Theorem 4.4, an implicit part of Definition 5.1 is tHathas full
neighborhood size, since full neighborhood size is the only case in vhishumpable to
L (by the row sum criterion).

DerFINITION 5.2. U is the(m — 1) x (|S| — 1) matrix constructed by removing the first
row and column ol. Similarly, V is the (|S] — 1) x (m— 1) matrix resulting from the
deletion of the first row and column &f.

LEMMA 5.1. If P is lumpable to L then
VUPV = PV. (14)

Proof. From Theorem 4.2, we hawdU PV = PV. As demonstrated in the proof of
Theorem 6.3.4 on page 126 in [1%]U has the form

W, 0 0 - 0
0 W, 0

vu=| . . (15)
: Wp: O
0 - - 0 W

In (15), eachV is square with the number of columns equal to the number of states in lumj
Additionally, each; is a rank one stochastic matrix with identical rows. By the definition:
of V, andU, the matrixVU is the same a¥ U, but withoutW; and its corresponding
row(s) and column(s) of zeros. By our constructionRyfW,; multiplies only those rows
and columns corresponding to the states where the global minima occur and hence h:
effect on the remainder d?. Likewise, the remainingV; multiply only those rows and
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columns corresponding to the states in lujrgnd have no effect on the rows and column
corresponding to the states in the first lump. Hence we get the desired mesult.

Paralleling the result in [15] that" =U P"V, we also havel"=U P"V. Let g, be
the initial distribution over the states ih. Constructgy so that theith component is
1/1S1> sla .1 =2, 3, ..., m,wherel 5, isthe characteristic function indicating membershi
of a state in partitiord;. In this case, ifAj| =n, choose théth component of3y to be
n/|S. We IetBO be the vector of lengtm — 1 whose components correspond to the initi
distribution over those states In This construction offy is equivalent to the following
definition.

DEFINITION 5.3.  Givenao, an initial distribution over the states $) andV as defined
in Definition 52, then

Bo=VTag. (16)

LEMMA 5.2. If P is lumpable to L «g is a uniform initial distribution over the states
in S, and By is as defined in DefinitioB.3, then

BIL" =&l P1. (17)
0 0

Proof. We start with the equality

BoLM = BJUP"V1, (18)

whereV is (S — 1) x (m—1) with only one 1 in each row. Henc¥,1 gives an|S| —
vector of ones. SimiIarIyBO hasith componenn; /|S|, wheren; is the number of states
in lumpi. By Definition 5.2, theith row of U hasn; elements, each of which is/t;.
Consequentlyﬁgu =&{. Making these substitutions on the right-hand side of (18) give

BILkL =& P¥1, (19)

the desired resulm

When P is not obtained from a matrix with full neighborhood size, the analysis is n
so straightforward because we do not have the necessary conditions for lumpifeg,
because of the size &f, we still prefer to work with some sort of aggregation of the state
LetV andU be as in Definition 5.2, and lét=U PV. Let E, =1+ A1+ Y12, AL,
be the expected hitting time for the lumped model using (3). We are interested in finc
|EL — Ep|. We choose to findE, — Ep| rather thanE, — Ep|. As will become evident,
finding the former requires finding the inverse of a relatively small matrix, whereas the Is
requires calculating the maximal eigenvalue and corresponding left and right eigenve
of UPV.

Beginning withE; — Ep and using (3), we can write

o0
EL-Ep=>» Ajl'1-) ajpP'L (20)
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By the definition off,, and recognizing that] L1= AJU PV1=aJ P1, (20) reduces to

o0 o0

EL—Ep= 33(2«3 PV —U ( F“>t>\7> 1. (21)
t=0 t=0

The matrices) PV and P have row sums that are less than or equal to one. Since each

the matrices is nonnegative and primitive, from Perron—Frobenius theory, each has max

eigenvalue less than 1. Given our assumption of ergodicity, by Lemma 2.1 in [5], the infir

sums in (21) converge td — U PV) 1 and(l — P)~1, respectively, so that (21) becomes

EL—Ep =4[l —UPV)1-U( - P)"IV]L (22)

In (22), we see the source of error in the estimate using the lumped model as opposedt
full model. The error matrix is obtained frogh — U PV)~1 — U (I — P)~1V. Evaluating
(I —UPV)~tand (I — P)~!is difficult for generalP. Fortunately, some theory exists
for matrices with this structure. In some cases, the theory will allow us to bound t
error |E. — Ep|. The matriceg| — PVU) and (I — P) are nonsingular M-matrices. An
M-matrix is a matrix that has nonpositive off-diagonal elements and positive diagor
elements (see, e.g. [5, p. 132]). By Theorem 3.11 of [20} PVU) and(l — P) have
inverses whose elements are strictly greater than zero, and we(lwit®€VU)~1 > 0 and
(1-P)1>o0.

Remark 5.2. Upper bounds ofj(I — PVU)™ ||, and ||(I — P)!|l« give us upper
bounds orEp andE_, respectively. For the case @f — P)~1, we have

Ep=ag(l —P)™ 11 (23)

< llaolloo 11 = P) Moo 1 Llleo (24)
IS|—1 5y—1

= | — P) Yoo 25

Rk )7l (25)

<10 = P) . (26)

Using 8, and(I —U PV)~1 and the same approach, we obt&in< ||(I —UPV) ! .

PROPOSITION5.1. Let M= (I — P) e R™" be a nonsingular M-matrix, wher® is
obtained from a row-stochastic matrixd®R™Y*+D Syppose M has row sums equal to
either zeroorr. Let G=M~"and L={l | }7_; m; =r}. Then,

f 1
> = - foralli. (27)
I=1

leL
Proof. Define the set¥ andL such thatk = {k| Z?Zl myj =0} and L ={l |Z?:1
mjj =r}. LetM1=r, wherer; =0 orr; =r. SinceM~1 = C exists, we can writd = Cr.
Choose an arbitrary row, sagf C. We haveZTzl Gijrj =1,0r ,ck Ciklk+ o Gin =1.

Sincer; =r for | e L, and 0 otherwise, we can write) ", _, ¢ =1. Dividing both sides
by r, we obtain the desired resuia

The result in Proposition 5.1 gives us a crude lower bound on the expected hitting tim
that it gives us a lower bound diil — P)~1| ... In an SA process, there will ¢ nonzero
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row sums ofl — P corresponding to the states that are neighbors of the global minimt
and the row sums that are nonzero will all equaN1ForN < |S| — 1, since(l — P)~!has
positive elements}(I — P)Y|ls > N and||(I — P)~|lo =N for N < |S| — 1. Therefore,
ad(I = P)" 11> Nog 1.

5.1. Parallel Expected Hitting Time

Thus far, we have been concerned with the sequential SA, that is, a single SA pro
In [26], it is shown that running Monte Carlo optimization techniques in parallel can res
in super-linear speedup for the process of finding global minima. The results they pro
are applicable to our algorithm, but here we are concerned with the magnitude of
error between the expected hitting time of a state space model run in parallel anc
expected hitting time of the lumped model run in parallel. The expected hitting time
a single process i§ ", Pr(¢ > t). In addition to providing the estimate in (6) for the
expected hitting time for parallel processes, itis shown in [26] that the expected hitting t
for nindependent identical processe$ s, [Pr(6 > t)]". Let Ep = > (2, Pr¥p >t) and
EL= > ;1 Pr6. > t) be the full and lumped expected hitting times for the single proce:
respectively, and leE{’ = S [Pr(@p > 1)]" and E\"™ = S22, [Pr(6. > 1)]" be the full
and lumped expected hitting times foindependent identical processes. Then,

E® —ED =Y [Proc=0]" - 3 [Prde = )", (28)
t=1 t=1

Choose the cooling parameier 0 such that lim., ,o[Pr(6p >1)]" =0 and lim_, »[Pr
(6L >1)]" =0. We impose this condition to maintain ergodicity. Without ergodicity, one:
both of the sums on the right-hand side of (28) may not converge. We can write (28) a

EM —EP =D e, (29)
t=1

where

Bt) =[Pr(6L =t) — Pr(6p > t)] (30)
and

a(t) = PO > )" + Pr0L > )" 2Pr(#p > t) + - - -
+Pr@. >t) Pr¥p > t)""2 + Pr(p > t)" 1.
We also have
|EL—Epl=|)_ B®)|. (31)
t=1

From (29), itis clear that as— oo, a(t) — 0 because Rfp >t) and P(6, >t) are both
less than one. ConsequennIE,,(_”) — Eg”| —0asn—oo. If Y12, a?(t) < oo, then using
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the Cauchy-Schwarz inequality,

00 12 , 1/2
B - EY| < (Z a2<t)> ( 3 ﬂ2<t>> : (32)

t=1 t=1

where a crude lower bound arit) is n[max{Pr@, >t), Pr@p >t)}]"2.

6. NUMERICAL RESULTS

To test the feedback algorithm we have chosen a suite of standard global optimiza
test functions. They are representative of the kinds of functions that arise in our work
geophysical optimization and seismic inversion. (See, for example, [19], [21], [22], [2-
[30]). In Sections 6.1-6.3, we test our algorithm on the following functions (defined in tl
Appendix):

1. Branin’s RCOS [27, p. 1027]

2D six-hump camel back [27, p. 1027]
2D Shubert [27, p. 1028]

Function F2 [31, p. 241]

Function F8 [31, p. 241].

a0

Each of the above functions has variabtewith |; < x; < u;, wherd andu are lower and
upper bounds, respectively. The problems in this set exhibit varying degrees of nonconve
Branin’s RCOS has three global minima with minimum function value 0.397887. The Z
six-hump camel back has two global minima with a minimum function value10316.
The 2D Shubert has 760 local minima. Among these 760 local minima are 18 glol
minima giving a minimum function value 6£186.73 [27]. Functions F2 and F8 both have
minimum function value 0. F8 is highly multimodal and the number of extrema depen
on the dimension of the problem.

We have formed the lumped transition probability matriand associated deleted tran-
sition probability matrix. by forming aggregated statés, . .., An, whereAq, ..., An_1
contain them — 1 states with the lowest function values af\gl contains all other states.
We compute the eigenvalues bofto find the expected hitting timg, using the EISPACK
routines elmhes, eltran, hgr, and hqr2. The eigenvalue computation is a small cost bec
of the small size of the lumped transition probability matrix.

6.1. E, as an Estimate for £

In (22) and the discussion following it, we illustrated that the error betweerand
Ep depends on the element-wise difference betwgenU PV)~LandU (I — P)~1V. We
then gave special cases where we can provide one-sided bounds for the error igtwee
andEp and indicated thakE is a fair estimate oEp, even though the requisite conditions
for lumpability do not exist. Throughout the following discussion, we define be the
state that has as its associated function value the global minimum.

In Fig. 1 we plot the relative errofEp — E_ |/Ep, against neighborhood size. In this
particular plot,c=10 and P e R1°*% js Jumped toL € R***%°, We choose to plot a
relatively small lump size here. As one would expect, the error decreases as the I
size increases. From the plot, we see that the error generally decreases with incre:
neighborhood size. Of course, when the neighborhood size is full, regardless of the It
size, no error exists.
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FIG. 1. Relative error ofEp, E, vs neighborhood size,= 10.

In Fig. 2 we have plotted the actual values Ky andE, as a function of neighborhood
size for the 2D Shubert function. Here, we have hdised at 10. Evidence of the disparity
betweenEp andE, is apparent, especially for small neighborhood sizes. The valo@of
Fig. 2 gives a large expected hitting time. We see in Fig. 1 that the relative error betw
Ep andE, for largeN is generally largest for the 2D Shubert function.
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FIG. 2. Ep, E, vs neighborhood size, 2D Shubert= 10.
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FIG. 3. Ep, E, vsc, 2D ShubertN = 20.

Figure 3 is similar to Fig. 2, except that we pl&$ andE as a function o€ while fixing
N at 20. The difference in these plots results only from the lumping procedure and the e
is relatively constant for most neighborhood sizes. This result is not unexpected. The fo
of each of the matrices have not changed. The zeros are in the same places in each
matrices, and the minimum number of transitions required to get to the global minimun
the same. A€ decreases:p and E, increase since uphill transitions occur at a smallel
rate.E, is lower here and is in all cases, because there is always a positive probability
reachingg from min L. We see from Fig. 1 that foN = 20 there is large relative error
betweenEp andE, for all the functions.

We implemented the algorithm on each of the test problems. Our approach was to
the algorithm first with eithec or N held fixed while we allowed the algorithm to adjust
the unfixed parameter and then to allow the algorithm to run, allowing both parameter
vary. In our case, keepirgfixed means keepingto a fixed schedule and not allowing the
algorithm to affect its value. All of our comparisons are in terms of independent trials wi
each trial over a fixed number of iterations (i.e., a fixed number of function evaluations)."
do, however, neglect in our comparisons the overhead involved in computing the diagno
This involves constructing the relevant deleted lumped transition matrices and solving sr
eigenvalue problems, so the cost can be made minimal and could be accomplished in pa
by a processor that is devoted to the task of computing the diagnostic.

6.2. The Algorithm with Fixed c or N

We chose as the cooling schedule the standard logarithmic schedule that can be fou
[27], namely,

C

0 =ihari

(33)
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TABLE |
Test Problem Results withc Fixed, N Variable (10° Iterations)

f from SA f from algorithm
Function Avg Min Max Avg Min Max
1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 —0.93369 —1.03163 —0.21546 —1.0153 —1.03163 —0.21546
3 —32.564 —186.731 —7.723 —40.2522 —186.731 —7.72788
4 5.17x 1077 0.0 1.65x 10°° 3.87x 1077 0.0 1.44x 10°°
5 0.40768 0.043671 0.49968 0.18971 6:620~* 0.442817

with C = 1. For each of the tests in this section, we randomly generated 50 starting po
and then for each of the starting points ran the algorithm féiite@ations. We discretized
the domain with a mesh size of 19 For the five problems with this mesh size, the stat
spaces range in size from abouk4.0° to 2 x 10° so that between 0.01% and 1% of the
state space is potentially visited during the search. We started the search=nithO and

N =0.15, the initialc and neighborhood size used in [27], and at the completiérn=0250
iterations, we allowed either or N to vary 1%, depending on which parameter we hel
fixed.

For the first test, we used the logarithmic schedule in (33), that is, the algorithm did
adjustc, but did adjustN. Table | gives the average, minimum, and maximum objecti\
function values obtained for the fifty trials as well as the corresponding values for the
nealing algorithm run according to the logarithmic schedule with no change in the pararn
N (typical SA). In each of the five cases, the average minimum found for the fifty tri:
using the algorithm is as good as or better than that found by SA.

Table Il gives the results of the run witd held fixed at 0.15 and with varied by the
algorithm. As in Table |, we useld = 10° andk = 250. The results here are similar to thos:
for the fixed neighborhood size, except that here the average function value obtained
SA for function 5 is lower than that obtained using the algorithm. Unlike SA, however, |
algorithm found the minimum function value for one of the trials.

6.3. The Algorithm with Variables c and N

We next ran the algorithm allowing bothand N to vary. For this test, we again startec
with c=10 andN = 0.15, but here, we performed 99 trials. Table Il gives the results f

TABLE Il
Test Problem Results withN Fixed, ¢ Variable (10° Iterations)

f from SA f from algorithm
Function Avg Min Max Avg Min Max
1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 —0.93369 —1.03163 —0.21546 —0.95001 —1.03163 —0.21546
3 —32.564 —186.731 —7.723 —71.9194 —186.731 —38.296
4 5.17x 1077 0.0 1.65x 10°° 1.67x 1077 0.0 1.09x 10°®
5. 0.40768 0.043671 0.49968 0.4494 0.0 0.49999
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TABLE Il
Test Problems Run with 16 lterations; ¢, N Variable

f from SA f from algorithm
Function Avg Min Max Avg Min Max
1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 —0.95743 —1.03163 —0.21546 —1.03163 —1.03163 —1.03163
3 —31.665 —186.731 —7.723 —67.286 —186.731 —38.286
4 5.06x 1077 0.0 1.65x 10°° 1.95x 1077 0.0 1.04x 10°°
5 0.405776 0.043671 0.499982 0.41006 m 0.499985

10° iterations for both SA using the logarithmic schedule and for the algorithm. As in tt
case whereN was held fixed (see Table II), SA had a smaller function value average f
function 5, but the algorithm found a better solution in one of the trials. In every oth
case, however, the algorithm performed as well as, or better than, SA in terms of avera
minimum values, and maximum values. The performance of the algorithm is especi
better for function 2, where the algorithm found the minimum on every trial. It is importa
to note here that the choice k=250 was arbitrary, yet even with the arbitrary choice,
allowingc andN to vary gave better results than typical SA.

The behavior ot and N differs depending on the function being tested. Both behav
nonmonotonically, althoughgenerally decreases as the number of iterations increases. T
neighborhood size does not exhibit any general upward or downward trend, but is affe
more by the type of function.

6.4. The Algorithm on Higher Dimension Problems

For the final set of results we compare the algorithm against typical SA on the six &
ten variable Griewank function [31]. These functions are highly nonconvex. Our approe
here was the same as that given in the previous three sections; i.e., we conducted 50
holding eitherc or N fixed, and then allowed both parameters to vary. We began with :
initial neighborhood size of 1 for both problems, an initi@alue of 150 for the six-variable
problem, and an initiat value of 40 for the 10-variable case. We conducted 50 trials fc
obtaining the starting values forand chose& such that the initial value far was the next
integer value greater than aoyttained for the trials. We did not investigate the reason fo
the disparity between the two starting values.dih each of the first two tests (fixexand
then fixedN), we ran the algorithm a total & = 1P iterations and allowed the parameters
to adjust 1% aftek = 750 iterations.

Table IV contains the results for the algorithm run while varybh@nd adhering to the
logarithmic cooling schedule. In this instance, the average of the trials, the minimum fot

TABLE IV
Griewank Function with ¢ Fixed, N Variable (10° Iterations)

f from SA f from algorithm
Variables Avg Min Max Avg Min Max
6 1.01197 1.00195 1.02318 0.983326 0.974810 0.990232

10 1.120159 1.043276 1.940210 1.023717 1.003709 1.045056
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TABLE V
Griewank Function with N Fixed, ¢ Variable (10° Iterations)

f from SA f from algorithm
Variables Avg Min Max Avg Min Max
6 1.01197 1.00195 1.02318 0.969481 0.964264 0.971445
10 1.120159 1.043276 1.940210 1.002638 1.000173 1.00413

over the trials, and the maximum found over the trials are all lower for the algorithm tt
for typical SA. For the 50 trials represented in Table IV the neighborhood sizes ranged f
the starting value of 1.0 up to a maximum of 3.04.

Table V gives the results of the algorithm run while varyaand holdingN fixed. Here
again, each of the quantities is lower for the algorithm than it is for SA. For these trial
had as its maximum its starting value of either 150 for the six-variable case or 40 for
10-variable case, and a minimum of 0.01 in both cases. The results shown in Tables I\
V indicate that varying only one of the parameters while holding the other fixed lead:
better solutions to large problems than does typical SA.

Table VI gives the results for the case where the algorithm adjustschartid N. The
average value obtained for both the 6- and 10-variable cases are lower than for SA
algorithm withc fixed, and the algorithm wit\ fixed.

7. CONCLUSIONS

We have shown that dynamic adjustment of the SA parametarsl N can result in
obtaining better solutions than using a typical SA-cooling schedule with a fixed neighl
hood size. We have used a lumped form of the underlying transition probability matri:
determine these parameters and then adjusted the parameters after evaluating the ex
hitting time. This approach provides an advantage over typical SA in that it maintains s
information of the problem in the form of the lumped matrix. To implement our techniq
fully, several other areas require further study. We arbitrarily select the starting neigh
hood size N, the number of iterations between the adjustment of the parameters, and t
values for the incremental changesctand N. An analytical approach to selecting thest
parameters could lead to an acceleration of the attainment of the global minima. We d«
discuss stopping criteria but, instead, demonstrate that, over a fixed number of iterat
the algorithm obtains better solutions on average than SA.

TABLE VI
Griewank Function with ¢, N Variable (10° Iterations)

f from SA f from algorithm
Variables Avg Min Max Avg Min Max
6 1.01197 1.00195 1.02318 0.969295 0.965595 0.972565

10 1.120159 1.043276 1.940210 1.002377 1.000672 1.00413




280 MOREY, SCALES, AND VAN VLECK

APPENDIX

1. Branin RCOS,
f(Xg, X0) = a(xz — bxf +cx — d)2 +el— f)cosxy) + e,

where —5<x; <10, 0<x, <15, a=1, b=5.1/(47)? c=5/m, d=6, e=10, f =
1/(8m).
2. 2D six-hump camel back,

f (X, X2) = (4 — 2.0%2 4+ X1 /3)XZ + XaXo + (—4 + 4x3) X3,

where—3<x; <3, -2<X, <2,
3. 2D Shubert,

5 5

fxa x2) =Y icosfi + Dxa+i])_ icosfi + Dxz +il,
i=1 i=1

where—10<x; <10, —10< x, < 10.
4. F2,

f (X1, X2) = 100(x? — xz)2 + (1= x)2,

where—2.048< x; <2.047.
5. F8 (Griewank),

N 2 N
X} Xi
=1 —_ _TJcos =),
900 =1+ 2500~ 11 ( i)
i=1 i=1
where—-512< x; <511.
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