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Monte Carlo methods have become popular for obtaining solutions to global op-
timization problems. One such Monte Carlo optimization technique is simulated an-
nealing (SA). Typically in SA the parameters of the search are determineda priori.
Using an aggregated, orlumped, version of SA’s associated Markov chain and the
concept of expected hitting time, we adjust the search parameters dynamically using
information gained from the SA search process. We present an algorithm that varies
the SA search parameters dynamically, and show that, on average, dynamic adjust-
ment of the parameters attains better solutions on a set of test problems than those
attained with a logarithmic cooling schedule.c© 1998 Academic Press

1. INTRODUCTION

Researchers in mathematics, engineering, and the sciences frequently encounter global
optimization problems of such magnitude that total enumeration of the state space or ap-
plication of deterministic algorithms is computationally impractical. Because of the size of
these problems, Monte Carlo methods—methods that employ some aspect of randomness—
are used to search for extrema of the objective function. The Monte Carlo optimization
technique that we will emphasize is simulated annealing (SA). SA is defined by search
parameters that are typically determineda priori. Without knowledge of the behavior of the
function being analyzed, poor selection of the search parameters can lead to a poor solution
or to a prohibitive computational effort in attaining a solution.

Our solution to determining the search parameters is to do so dynamically using infor-
mation obtained during the search process by perturbing the transition probability matrix
associated with the underlying Markov chain. Our contributions include an algorithm that,
on average, attains better solutions to nonlinear multimodal global optimization problems.
We have tested the algorithm on established test problems from the literature to determine the
viability of the method. The algorithm relies on the transition probability matrix associated
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with the Markov chain underlying SA. We give conditions for which the SA Markov chain
is lumpable. Our criterion for dynamically adjusting the search parameters is theexpected
hitting time.

This paper is organized as follows. Section 2 provides background on SA and a diagnostic
tool, the expected hitting time, that we use to adjust the search parameters. Section 3 gives
background theory on the underlying Markov chain, its lumpability, and one set of conditions
for which we can analytically calculate expected hitting time. Section 4 contains theoretical
results in our application of expected hitting time to the lumped Markov chain. In Section 5,
we present our algorithm using the lumped model and indicate the relationship between
this model and the model that uses the whole state space. Section 6 contains our numerical
results, and Section 7 has our conclusions and areas requiring further study.

2. BACKGROUND

Simulated annealing (SA) was introduced in [16] as a means of solving large combinato-
rial optimization problems. A scalar valued objective functionf is defined over a suitable
finite state spaceS= {1, 2, . . . , n}, where eachs∈ S corresponds to a feasible solution of
the optimization problem. Typically we want to minimize the objective function,f . For
each point,i , in the domain, define a neighborhood,N(i ), of i . Define |N(i )| to be the
number of states inN(i ).

It is convenient to think of the SA algorithm acting on a single particle moving throughS.
A sequence of states develops by randomly choosing a starting state,i . Next a state,j ∈ N(i ),
is selected at random. Iff ( j ) is less than or equal tof (i ), then the particle moves to state
j and the process is continued. Iff ( j ) is greater thanf (i ), then the move toj is accepted
with probability exp[( f (i ) − f ( j ))/c], wherec is a parameter (the temperature). The heart
of SA is the move criterion exp[( f (i ) − f ( j ))/c], where f ( j ) > f (i ) and was originally
proposed in [18] as a means of simulating the equilibration of a gas in a heat bath. When
c is sufficiently large (analogous to the gas in the heat bath being heated to a very high
temperature), virtually every move will be accepted, including uphill moves; this allows the
particle to escape from local minima. Asc decreases, the chances of accepting an uphill
move decrease so that at a low value ofc, the particle will be trapped in a minimum. A
cooling scheduleis a specification ofc as a function of time. It has been shown [10, 13]
that, given an ideal cooling schedule that decrementsc as well as determines how many
moves to make at each value ofc, the process will converge to the globally optimal solution
with probability 1. But such an ideal schedule would require an impractical amount of
computation.

Mathematically, SA can be viewed as a discrete time nonstationary Markov chain. The
underlying transition probability matrix associated with the stationary (fixedc) SA Markov
chain has the following transition probabilities forc given [1]:

pi j =


1

|N| , f ( j ) ≤ f (i ), j ∈ N(i );
1

|N| exp
( f (i )− f ( j )

c

) ≡ 1
|N| gi j , f (i ) < f ( j ), j ∈ N(i );

0, j /∈ N(i );
(1)

pii = 1 −
n∑

j =1
j 6=i

pi j .
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The elementspi j give the probability of a transition to statej given that the process is in
statei .

In the application of SA, many factors affect the algorithm’s performance. Some of these
factors have to do with the cooling schedule, and some with the neighborhood structure [1].
To reduce the time required to reach a good (although not necessarily optimal) solution,
cooling schedules have received much attention [1, 3, 4, 10, 13, 20, 28].

Neighborhood structure is made up of two components. The first involves the method
for generating the next state,j , to which a move is proposed from the current state,i . The
second component is the cardinality of the setN(i ). Both the generation of a neighbor
and neighborhood size have been addressed by various researchers [7, 11, 33, 34]. Usually,
the neighborhood structure is determineda priori, although in [33] and [34] it is done
using some information gained from the search. Yet, because of the size of the underlying
stochastic matrix, use of the matrix itself for gaining information about the search process
is typically avoided.

We refer to the cooling schedule and neighborhood structure as thesearch parameters.
Our goal is to adjust these parameters dynamically to accelerate the convergence of the
algorithm to the set of globally optimal solutions. We want to do this withouta priori
knowledge of the function being studied, aside from variable constraints. The tool we use
is theexpected hitting time.

Shonkwiler and Van Vleck [26] provide a concept of convergence that, given the Markov
chain associated with a Monte Carlo search process, determines the expected time to reach
a goal state, which in our case is a global minimum. Ifθ denotes the random variable equal
to the first timet that the state of the search process reaches a goal state, then the expected
hitting time (EHT) is given by

E(θ) =
∞∑

t=1

t Pr(θ = t), (2)

where Pr(θ = t), t = 1, 2, . . . , is the probability density function forθ . Suppose that̂P,
called thedeleted transition probability matrix, is the submatrix that results from the dele-
tion of the rows and columns ofP that correspond to the states in which global minima
occur. Define|S| to be the cardinality of the set of all states,S. A formula for the EHT (see
[26]) is

EHT = 1 + α̂T
0

( ∞∑
t=0

P̂t

)
1, (3)

whereα̂0, a vector of length|S| − 1, is the initial probability distribution on the states inP̂,
and1 is an|S| − 1 length vector of ones. Because of the difficulty in evaluating (3) for large
P̂, Shonkwiler and Van Vleck provide an estimate for the expected hitting time. Letλ̂ be
the maximal eigenvalue of̂P. Letχ be a right eigenvector of̂P associated witĥλ, whereχ
has been normalized such that its inner product with the left eigenvector (which has been
normalized to be a probability vector) is 1. If we define the parameters as

s = λ̂

α̂T
0 χ

, (4)

then the expected hitting time, for a stationary, single process search, can be approximated
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by

E1 = 1

s

1

1 − λ̂
, (5)

while for independent identical processes (IIP), that is,m parallel processes, the expected
hitting time is approximated by

Em = 1

sm

(
1

1 − λ̂m

)
. (6)

The difficulty in using the estimate (5) or (6) is the need to calculate left and right
eigenvectors ofP̂. In general, working with the underlying Markov matrix is unrealistic
given its|S| × |S| dimension. In [4] a lumped model of the SA Markov chain is developed
using theory that can be found in [15]. Their criterion for designing an annealing schedule
is based on thermodynamic considerations; the temperature is decreased in such a way
as to minimize entropy production. The equation governing the temperature decrease can
be expressed in terms of the relaxation rate of the Markov chain, which they estimate
from the lumped model. In the most general sense, lumping a Markov chain involves
aggregating states into megastates. The result of the lumping is a Markov chain giving a
coarse analog of the full chain. In this sense our use of lumping is an example of a more
general class of methods known in operations research as aggregation and disaggregation
techniques [23]. However, our strategy is not simply to reduce the size of the original
optimization problem, but rather to use lumping as a means of estimating the expected
hitting time of the full problem. In this sense our approach is rather different from standard
aggregation/disaggregation techniques.

Typically, the full chain cannot be lumped arbitrarily without losing the Markov property,
but given certain conditions, and matricesU and V defined in Section 3, the transition
probability matrixP can be lumped toL using the transformation [15]

L = U PV. (7)

We refer to the underlying Markov chain as thestate space chainand the lumped chain as
theenergy space chain, where energy is meant to denote the value of the objective function.
The lumping in [4] is a lumping by energies, i.e., states with similar energies are aggregated
in the lumped model.

We conclude this section with notation and some of the assumptions that we use through-
out the remainder of this paper. We assume that the transition probability matrix,P, has
been ordered{1, 2, . . . , |S|} such thatf (1) ≤ f (2) ≤ · · · ≤ f (|S|). We also assume that the
stationary matrix,P, is ergodic. The deleted transition probability matrix associated withP
is P̂. The lumped version isL and its associated deleted transition probability matrix isL̂.
The expected hitting time calculated using (3) forP̂ is denoted byEP while that associated
with L̂ is denoted byEL . The values using the estimate of the expected hitting time in (5)
are denoted bỹEP and ẼL . Although it is possible to go fromi at stept to i at t + 1, for
the following definitions, and throughout the paper, we assumei /∈ N(i ) for the purpose of
generating states to which a move is proposed fromi . The vector of ones is denoted by1,
and the length of1 will be clear from the context.
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3. ALGORITHM

Our primary goal in developing the algorithm was to provide a robust approach, capable
of attaining an optimal solution with noa priori knowledge of the function being optimized
other than variable constraints. The algorithm automates the feedback loop associated with
typical implementations of SA; that is, rather than run the SA several times to determine
appropriate choices ofc andN, the algorithm does so automatically. In addition, as we will
see there is some theoretical justification for our choice ofc andN. The top-level algorithm
involves augmenting a search process such as SA with a diagnostic on the efficiency of the
search that allows one to adjust the search parameters.

TOPLEVEL ALGORITHM

1. Given a fixed value of the cooling parameter and a structure for the neighbors of the
statesi ∈ Sbegin thesearchprocess.

2. Gather information during the search process including function values and neigh-
borhood structure toapproximate the Markov chain.

3. Using the information found during the search and adiagnostic that predicts an
acceleration in the search process, choose new values ofc and the neighborhood structure.

This is a simple example of a feedback loop that uses the previously sampled states to
determine values ofc and the neighborhood structure that are predicted to converge to the
optimum value faster. Our goal is to come up with a diagnostic that is efficient, easy to
implement, and a good predictor. What we propose is to use the EHT of a lumped version
of the approximate Markov chain we have constructed through sampling. We will then
compare the lumped EHT for the current values ofc and neighborhood structure with
different values ofc and different neighborhood structure.

Diagnostic. 1. Given pairs of function values and states and a neighborhood structure,
build lumped Markov chains for different values ofc and neighborhood structure.

2. Determine the lumped EHT for different values ofc and neighborhood structure using
(3), with L̂ substituted forP̂, (4), and (5) and an eigendecomposition ofL̂, or using (3),
with L̂ substituted forP̂, directly by solving the linear system(I − L̂)x = 1.

3. Choose a newc and neighborhood structure by selecting the one with the minimum
value of lumped EHT.

In our implementation we used uniform neighborhood size|N| and the following simple
method for determining the updatedc andN. Using increments forc andN, δc andδN, res-
pectively, we calculateEL so that we have nine two-tuples:(c+ δc, N), (c+ δc, N − δN),
(c+ δc, N + δN), (c, N − δN), (c, N), (c, N + δN), (c− δc, N − δN), (c− δc, N), and
(c− δc, N + δN). This list can evidently be expanded for different values ofδ. Calculating
EL for the nine two-tuples has the effect of performing a local search on the(c, N) surface
to find the point that minimizesEL . The minimum value obtained forEL during this process
gives us(c, N) for the nextk iterations of the SA search.

We have formedL by sampling along the search trajectory, considering the current state
and all of its neighbors, and have updatedL and the eight related forms ofL using an
insertion sort. As we explain in more detail in the next section, ifL is anm by m matrix,
then the firstm− 1 states correspond to them− 1 lowest function values encountered along
our search trajectory, while the remaining state is an aggregate of all those states with higher
function values. The only entries that are difficult to keep track of inL (see (1) and (8))
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are the transition probabilities from any of the firstm− 1 states to the aggregated state. We
accomplish this by updating the transition probabilities to the aggregated state as new states
are encountered. Once our sampling is complete, we formL̂ by deleting the first row and
column ofL.

4. THE SA MARKOV CHAIN

Given our ordering and a uniform neighborhood assumption,N = |S| − 1, the transition
probability matrix has the structure:

P =



1 − ∑|S|
j =2

g1, j

N
g1,2

N
g1,3

N · · · g1,|S|
N

1
N

N−1
N − ∑|S|

j =3
g2, j

N
g2,3

N · · · ...

1
N

1
N

. . . · · · ...
...

...
... 2

N − g|S|−1,|S|
N

g|S|−1,|S|
N

1
N · · · · · · 1

N 0


. (8)

We call this matrix thecanonical formof the SA transition probability matrix. We can make
any SA problem fit the canonical form by adjustingN and by makingpi j = 0 for those
one-step transitions that are not permitted. The deleted transition probability matrix,P̂, is
simply the matrixP in (8) with the first row and first column deleted.

Remark 4.1. Not all of the structural information ofP and P̂ is readily evident from
the form of the matrices. Ifk > j > i, pi j 6= 0, andpik 6= 0, thenpi j ≥ pik . Additionally, if
k < j < i, pji 6= 0, andpki 6= 0, thenpji ≥ pki . Finally, pi j = 0⇔ pji = 0.

Before we present our results on lumpability, we provide definitions and theorems from
[15]. Assume that we want to lump the SA Markov chain with respect to the partition
A = {A1, A2, . . . , Am}, m≤ |S|. For our purposes,m¿ |S|. Let qi A j = ∑

k∈A j
pik ; that is,

qi A j is the sum of the transition probabilities fromi to the states in lumpA j . The next theorem
gives the conditions under which a Markov chain can be lumped while guaranteeing that
the Markov property is preserved.

THEOREM 4.1 [15,Theorem6.3.2]. A necessary and sufficient condition for a Markov
chain to be lumpable with respect to a partitionA = {A1, A2, . . . , Am} is that, for every
pair of setsA i andA j , qk Aj is the same for every state sk in A i .

The condition given in Theorem 4.1 is referred to as therow sumcriterion [6].

DEFINITION 4.1. LetU be them× |S| matrix whosei th row is a uniform probability
vector over the states inA i , and 0 otherwise. LetV be the|S| × m matrix such thatvi j = 1
if si ∈ A j , and 0 otherwise.

If P is lumpable with respect to the partitionA, the lumped chain,L, is obtained from
the transformation

L = U PV, (9)

with transition probabilitiesLi j [2, 15].
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THEOREM 4.2 [15,Theorem6.3.4]. If P is the transition matrix of a chain lumpable
with respect to the partitionA, and if the matrices U and V are defined as in Definition4.1
with respect to this partition, then

VU PV = PV. (10)

THEOREM 4.3 [15, Theorem6.3.5]. If P, A,U, and V are as in Theorem4.2, then
condition(10) is equivalent to lumpability.

Let ni be the number of states in the partitionA i , and letsk Ai denote thekth state in
partitionA i , that is, statesk is a member of the aggregated stateAi . With these definitions
and the background we have presented from [15], we can show that the lumping cannot be
done arbitrarily if the lumped chain is to maintain the Markov property.

THEOREM 4.4. Given the state-space transition probability matrix P associated with
an SA problem with full neighborhood size, the Markov chain is lumpable with respect to
the partition

A = {A1, A2, . . . , Am} (11)

if and only if

A j = {s1Aj , s2Aj , . . . , snj Aj }, j = 1, 2, . . . , m − 1, (12)

where

f (si A j ) = f (sk Aj ) for all i , k ∈ A j . (13)

Proof. SupposeP is lumpable with respect to the partitionA. By Theorem (4.3),
VU PV= PV. Let i, j ∈ Ak. Letei be the unit vector of length|S| with 1 in thei th position,
letej be a unit vector of the same length with 1 in thej th position, and letek be a unit vector of
lengthmwith 1 in thekth position. TheneT

i VU PV= eT
i PV ⇒ eT

k U PV = eT
i PV ⇒ eT

k L =
eT

i PV. Similarly,eT
k L = eT

j PV. Hence,eT
i PV = eT

j PV. PartitionV in the formV = (v1, v2,

. . . , vm), and choose arbitrarys∈ {1, 2, . . . , m− 1}. TheneT
i Pvs = eT

j Pvs, wherePvs has
the effect of summing the probabilities inP associated with the states in lumpAs. The
equationeT

i Pvs = eT
j Pvs requires that the sums in rowsi and j be the same for lumpAs.

Recalling the structure ofP given in Remark 4.1, we see that this means that rowsi and j
are the same element-wise. Therefore,f (si ) = f (sj ) for all i, j ∈ Ak. Conversely, suppose
Ak = {s1Ak , s2Ak , . . . , snk Ak}, j = 1, 2, . . . , m− 1, where f (si ) = f (sj ) for all i, j ∈ Ak. By
the structure of the matrix, the rows for the states inAk are the same. The result follows
directly from Theorem 4.1.

Theorem 4.4 allows us to lump the chain by energy level (or function value in our analogy)
as long as the state that corresponds to the minimum function value is the only state in the
first lump. More precisely, if we wantm lumps, then the firstm− 1 lumps must satisfy
f (1) ≤ f (2) ≤ · · · ≤ f (m− 1), while the remaining states can all be lumped into state
Am, as long asf ( j ) ≥ f (i ), j ∈ Am, i /∈ Am. For the full neighborhood size case, we can
have 2≤ m≤ |S| and still maintain the Markov property. On the other hand, the conditions
necessary for lumping a chain with other than full neighborhood size do not exist in general
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as can be seen from Theorem 4.1. However, in our numerical experiments we will form
an aggregated transition probabity matrixL and associated aggregated deleted transition
probabity matrixL̂ by putting them− 1 states with lowest function values into aggregated
statesA1, . . . , Am−1 and the remaining states into aggregated stateAm.

5. THEORETICAL RESULTS

We begin this section with theorems relating the deleted transition probability matrix,
P̂, to the lumped matrix,̂L. Recall thatP̂ is derived from the transition probability matrix,
P, by deleting the first row and column fromP. The matrixL̂ is similarly derived from
the lumped matrix,L. Using the results we obtain on the relationship betweenP̂ and L̂
along with results on the inverses of certainM-matrices, we demonstrate the relationships
between the expected hitting time for the state space model and the expected hitting time for
the lumped model for the full neighborhood size case and the other than full neighborhood
size case. As before, the state space matrix is|S| × |S|, while the lumped matrix ism× m.
Let EP andEL be the expected hitting times obtained using (3) for the state space model
and the lumped model, respectively. LetẼP andẼL be the estimated expected hitting times
obtained using (5) for the state space model and the lumped model, respectively.

DEFINITION 5.1. If P is lumpable with respect to the partitionA = {A1, A2, . . . , Am},
and ifU andV are as defined in Definition 4.1, then ifL =U PV, P is lumpable toL.

Remark 5.1. From Theorem 4.4, an implicit part of Definition 5.1 is thatP has full
neighborhood size, since full neighborhood size is the only case in whichP is lumpable to
L (by the row sum criterion).

DEFINITION 5.2. Û is the(m− 1) × (|S| − 1) matrix constructed by removing the first
row and column ofU . Similarly, V̂ is the (|S| − 1) × (m− 1) matrix resulting from the
deletion of the first row and column ofV .

LEMMA 5.1. If P is lumpable to L, then

V̂Û P̂V̂ = P̂V̂ . (14)

Proof. From Theorem 4.2, we haveVU PV= PV. As demonstrated in the proof of
Theorem 6.3.4 on page 126 in [15],VU has the form

VU =


W1 0 0 · · · 0
0 W2 0 · · · ·
· . . . ·
· Wm−1 0
0 · · 0 Wm

 . (15)

In (15), eachWi is square with the number of columns equal to the number of states in lumpi .
Additionally, eachWi is a rank one stochastic matrix with identical rows. By the definitions
of V̂ , andÛ , the matrixV̂Û is the same asVU, but withoutW1 and its corresponding
row(s) and column(s) of zeros. By our construction ofP, W1 multiplies only those rows
and columns corresponding to the states where the global minima occur and hence has no
effect on the remainder ofP. Likewise, the remainingWj multiply only those rows and
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columns corresponding to the states in lumpj and have no effect on the rows and columns
corresponding to the states in the first lump. Hence we get the desired result.

Paralleling the result in [15] thatLn =U PnV , we also havêLn = Û P̂nV̂ . Let β0 be
the initial distribution over the states inL. Constructβ0 so that thei th component is
1/|S|∑SIA i , i = 2, 3, . . . , m, whereIA i is the characteristic function indicating membership
of a state in partitionA i . In this case, if|A i | = n, choose thei th component ofβ0 to be
n/|S|. We letβ̂0 be the vector of lengthm− 1 whose components correspond to the initial
distribution over those states in̂L. This construction ofβ0 is equivalent to the following
definition.

DEFINITION 5.3. Givenα0, an initial distribution over the states inS, andV̂ as defined
in Definition 5.2, then

β̂0 = V̂Tα̂0. (16)

LEMMA 5.2. If P is lumpable to L, α0 is a uniform initial distribution over the states
in S, andβ0 is as defined in Definition5.3, then

β̂T
0 L̂n1 = α̂T

0 P̂n1. (17)

Proof. We start with the equality

β̂T
0 L̂n1 = β̂T

0Û P̂nV̂1, (18)

whereV̂ is (|S| − 1) × (m− 1) with only one 1 in each row. Hence,V̂1 gives an|S| − 1
vector of ones. Similarly,̂β0 hasi th componentni /|S|, whereni is the number of states
in lump i . By Definition 5.2, thei th row of Û hasni elements, each of which is 1/ni .
Consequently,̂βT

0Û = α̂T
0. Making these substitutions on the right-hand side of (18) gives

β̂T
0 L̂k1 = α̂T

0 P̂k1, (19)

the desired result.

When P̂ is not obtained from a matrix with full neighborhood size, the analysis is not
so straightforward because we do not have the necessary conditions for lumpingP̂. Yet,
because of the size of̂P, we still prefer to work with some sort of aggregation of the states.
Let V̂ andÛ be as in Definition 5.2, and let̂L = Û P̂V̂ . Let EL = 1+ β̂T

01+ ∑∞
t=2 β̂T

0 L̂ t1,
be the expected hitting time for the lumped model using (3). We are interested in finding
|EL − EP|. We choose to find|EL − EP| rather than|ẼL − EP|. As will become evident,
finding the former requires finding the inverse of a relatively small matrix, whereas the latter
requires calculating the maximal eigenvalue and corresponding left and right eigenvectors
of Û P̂V̂ .

Beginning withEL − EP and using (3), we can write

EL − EP =
∞∑

t=0

β̂T
0 L̂ t1 −

∞∑
t=0

α̂T
0 P̂t1. (20)
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By the definition ofβ̂0, and recognizing that̂βT
0 L̂1= β̂T

0Û P̂V̂1= α̂T
0 P̂1, (20) reduces to

EL − EP = β̂T
0

( ∞∑
t=0

(Û P̂V̂)t − Û

( ∞∑
t=0

P̂t

)
V̂

)
1. (21)

The matricesÛ P̂V̂ and P̂ have row sums that are less than or equal to one. Since each of
the matrices is nonnegative and primitive, from Perron–Frobenius theory, each has maximal
eigenvalue less than 1. Given our assumption of ergodicity, by Lemma 2.1 in [5], the infinite
sums in (21) converge to(I − Û P̂V̂)−1 and(I − P̂)−1, respectively, so that (21) becomes

EL − EP = β̂T
0[(I − Û P̂V̂)−1 − Û (I − P̂)−1V̂ ]1. (22)

In (22), we see the source of error in the estimate using the lumped model as opposed to the
full model. The error matrix is obtained from(I − Û P̂V̂)−1 − Û (I − P̂)−1V̂ . Evaluating
(I − Û P̂V̂)−1 and (I − P̂)−1 is difficult for generalP̂. Fortunately, some theory exists
for matrices with this structure. In some cases, the theory will allow us to bound the
error |EL − EP|. The matrices(I − P̂V̂Û ) and(I − P̂) are nonsingular M-matrices. An
M-matrix is a matrix that has nonpositive off-diagonal elements and positive diagonal
elements (see, e.g. [5, p. 132]). By Theorem 3.11 of [29],(I − P̂V̂Û ) and(I − P̂) have
inverses whose elements are strictly greater than zero, and we write(I − P̂V̂Û )−1 > 0 and
(I − P̂)−1 > 0.

Remark 5.2. Upper bounds on‖(I − P̂V̂Û )−1‖∞ and ‖(I − P̂)−1‖∞ give us upper
bounds onEP andEL , respectively. For the case of(I − P̂)−1, we have

EP = αT
0 (I − P̂)−11 (23)

≤ ‖α0‖∞ ‖(I − P̂)−1‖∞ ‖1‖∞ (24)

= |S| − 1

|S| ‖(I − P̂)−1‖∞ (25)

< ‖(I − P̂)−1‖∞. (26)

Usingβ̂0 and(I − Û P̂V̂)−1 and the same approach, we obtainEL < ‖(I − Û P̂V̂)−1‖∞.

PROPOSITION5.1. Let M= (I − P̂) ∈Rn×n be a nonsingular M-matrix, wherêP is
obtained from a row-stochastic matrix P∈R(n+1)×(n+1). Suppose M has row sums equal to
either zero or r . Let C= M−1 and L= {l | ∑n

j =1 mlj = r }. Then,

n∑
l=1
l∈L

cil = 1

r
for all i . (27)

Proof. Define the setsK and L such thatK = {k | ∑n
j =1 mkj = 0} and L = {l | ∑n

j =1

mlj = r }. Let M1= r , whereri = 0 or ri = r . SinceM−1 = C exists, we can write1= Cr .
Choose an arbitrary row, sayi ofC. We have,

∑n
j =1 ci j r j = 1, or

∑
k∈K cikrk+

∑
l∈L cil rl = 1.

Sinceri = r for l ∈ L, and 0 otherwise, we can writer
∑

l∈L cil = 1. Dividing both sides
by r , we obtain the desired result.

The result in Proposition 5.1 gives us a crude lower bound on the expected hitting time in
that it gives us a lower bound on‖(I − P̂)−1‖∞. In an SA process, there will beN nonzero
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row sums ofI − P̂ corresponding to the states that are neighbors of the global minimum,
and the row sums that are nonzero will all equal 1/N. ForN < |S| − 1, since(I − P̂)−1 has
positive elements,‖(I − P̂)−1‖∞ > N and‖(I − P̂)−1‖∞ = N for N < |S| − 1. Therefore,
αT

0 (I − P̂)−11≥ NαT
0 1.

5.1. Parallel Expected Hitting Time

Thus far, we have been concerned with the sequential SA, that is, a single SA process.
In [26], it is shown that running Monte Carlo optimization techniques in parallel can result
in super-linear speedup for the process of finding global minima. The results they provide
are applicable to our algorithm, but here we are concerned with the magnitude of the
error between the expected hitting time of a state space model run in parallel and the
expected hitting time of the lumped model run in parallel. The expected hitting time for
a single process is

∑∞
t=1 Pr(θ ≥ t). In addition to providing the estimate in (6) for the

expected hitting time for parallel processes, it is shown in [26] that the expected hitting time
for n independent identical processes is

∑∞
t=1[Pr(θ ≥ t)]n. Let EP = ∑∞

t=1 Pr(θP ≥ t) and
EL = ∑∞

t=1 Pr(θL ≥ t) be the full and lumped expected hitting times for the single process,
respectively, and letE(n)

P = ∑∞
t=1[Pr(θP ≥ t)]n and E(n)

L = ∑∞
t=1[Pr(θL ≥ t)]n be the full

and lumped expected hitting times forn independent identical processes. Then,

E(n)
L − E(n)

P =
∞∑

t=1

[Pr(θL ≥ t)]n −
∞∑

t=1

[Pr(θP ≥ t)]n. (28)

Choose the cooling parameterc> 0 such that limt→∞[Pr(θP ≥ t)]n = 0 and limt→∞[Pr
(θL ≥ t)]n = 0. We impose this condition to maintain ergodicity. Without ergodicity, one or
both of the sums on the right-hand side of (28) may not converge. We can write (28) as

∣∣E(n)
L − E(n)

P

∣∣ =
∣∣∣∣∣

∞∑
t=1

β(t)α(t)

∣∣∣∣∣, (29)

where

β(t) = [Pr(θL ≥ t) − Pr(θP ≥ t)] (30)

and

α(t) = Pr(θL ≥ t)n−1 + Pr(θL ≥ t)n−2 Pr(θP ≥ t) + · · ·
+ Pr(θL ≥ t) Pr(θP ≥ t)n−2 + Pr(θP ≥ t)n−1.

We also have

|EL − EP| =
∣∣∣∣∣

∞∑
t=1

β(t)

∣∣∣∣∣. (31)

From (29), it is clear that asn → ∞, α(t) → 0 because Pr(θP ≥ t) and Pr(θL ≥ t) are both
less than one. Consequently,|E(n)

L − E(n)
P | → 0 asn → ∞. If

∑∞
t=1 α2(t) <∞, then using
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the Cauchy–Schwarz inequality,

∣∣E(n)
L − E(n)

P

∣∣ ≤
( ∞∑

t=1

α2(t)

)1/2( ∞∑
t=1

β2(t)

)1/2

, (32)

where a crude lower bound onα(t) is n[max{Pr(θL ≥ t), Pr(θP ≥ t)}]n−1.

6. NUMERICAL RESULTS

To test the feedback algorithm we have chosen a suite of standard global optimization
test functions. They are representative of the kinds of functions that arise in our work in
geophysical optimization and seismic inversion. (See, for example, [19], [21], [22], [24],
[30]). In Sections 6.1–6.3, we test our algorithm on the following functions (defined in the
Appendix):

1. Branin’s RCOS [27, p. 1027]
2. 2D six-hump camel back [27, p. 1027]
3. 2D Shubert [27, p. 1028]
4. Function F2 [31, p. 241]
5. Function F8 [31, p. 241].

Each of the above functions has variablesxi with l i ≤ xi ≤ ui , wherel andu are lower and
upper bounds, respectively. The problems in this set exhibit varying degrees of nonconvexity.
Branin’s RCOS has three global minima with minimum function value 0.397887. The 2D
six-hump camel back has two global minima with a minimum function value of−1.0316.
The 2D Shubert has 760 local minima. Among these 760 local minima are 18 global
minima giving a minimum function value of−186.73 [27]. Functions F2 and F8 both have
minimum function value 0. F8 is highly multimodal and the number of extrema depends
on the dimension of the problem.

We have formed the lumped transition probability matrixL and associated deleted tran-
sition probability matrixL̂ by forming aggregated statesA1, . . . , Am, whereA1, . . . , Am−1

contain them− 1 states with the lowest function values andAm contains all other states.
We compute the eigenvalues ofL̂ to find the expected hitting timeEL using the EISPACK
routines elmhes, eltran, hqr, and hqr2. The eigenvalue computation is a small cost because
of the small size of the lumped transition probability matrix.

6.1. EL as an Estimate for EP

In (22) and the discussion following it, we illustrated that the error betweenEL and
EP depends on the element-wise difference between(I − Û P̂V̂)−1 andÛ (I − P̂)−1V̂ . We
then gave special cases where we can provide one-sided bounds for the error betweenEL

andEP and indicated thatEL is a fair estimate ofEP, even though the requisite conditions
for lumpability do not exist. Throughout the following discussion, we defineg to be the
state that has as its associated function value the global minimum.

In Fig. 1 we plot the relative error,|EP − EL |/EP, against neighborhood size. In this
particular plot,c= 10 and P̂ ∈R100×100 is lumped toL̂ ∈R10×10. We choose to plot a
relatively small lump size here. As one would expect, the error decreases as the lump
size increases. From the plot, we see that the error generally decreases with increasing
neighborhood size. Of course, when the neighborhood size is full, regardless of the lump
size, no error exists.
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FIG. 1. Relative error ofEP, EL vs neighborhood size,c= 10.

In Fig. 2 we have plotted the actual values forEP andEL as a function of neighborhood
size for the 2D Shubert function. Here, we have heldc fixed at 10. Evidence of the disparity
betweenEP andEL is apparent, especially for small neighborhood sizes. The value ofc in
Fig. 2 gives a large expected hitting time. We see in Fig. 1 that the relative error between
EP andEL for largeN is generally largest for the 2D Shubert function.

FIG. 2. EP, EL vs neighborhood size, 2D Shubert,c= 10.



             

276 MOREY, SCALES, AND VAN VLECK

FIG. 3. EP, EL vs c, 2D Shubert,N = 20.

Figure 3 is similar to Fig. 2, except that we plotEP andEL as a function ofc while fixing
N at 20. The difference in these plots results only from the lumping procedure and the error
is relatively constant for most neighborhood sizes. This result is not unexpected. The forms
of each of the matrices have not changed. The zeros are in the same places in each of the
matrices, and the minimum number of transitions required to get to the global minimum is
the same. Asc decreases,EP and EL increase since uphill transitions occur at a smaller
rate.EL is lower here and is in all cases, because there is always a positive probability of
reachingg from m in L̂. We see from Fig. 1 that forN = 20 there is large relative error
betweenEP andEL for all the functions.

We implemented the algorithm on each of the test problems. Our approach was to run
the algorithm first with eitherc or N held fixed while we allowed the algorithm to adjust
the unfixed parameter and then to allow the algorithm to run, allowing both parameters to
vary. In our case, keepingc fixed means keepingc to a fixed schedule and not allowing the
algorithm to affect its value. All of our comparisons are in terms of independent trials with
each trial over a fixed number of iterations (i.e., a fixed number of function evaluations). We
do, however, neglect in our comparisons the overhead involved in computing the diagnostic.
This involves constructing the relevant deleted lumped transition matrices and solving small
eigenvalue problems, so the cost can be made minimal and could be accomplished in parallel
by a processor that is devoted to the task of computing the diagnostic.

6.2. The Algorithm with Fixed c or N

We chose as the cooling schedule the standard logarithmic schedule that can be found in
[27], namely,

c(k) = C

ln(1 + k)
(33)
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TABLE I

Test Problem Results withc Fixed, N Variable (106 Iterations)

f from SA f from algorithm

Function Avg Min Max Avg Min Max

1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 −0.93369 −1.03163 −0.21546 −1.0153 −1.03163 −0.21546
3 −32.564 −186.731 −7.723 −40.2522 −186.731 −7.72788
4 5.17× 10−7 0.0 1.65× 10−6 3.87× 10−7 0.0 1.44× 10−6

5 0.40768 0.043671 0.49968 0.18971 6.62× 10−4 0.442817

with C = 1. For each of the tests in this section, we randomly generated 50 starting points,
and then for each of the starting points ran the algorithm for 106 iterations. We discretized
the domain with a mesh size of 10−4. For the five problems with this mesh size, the state
spaces range in size from about 4× 108 to 2× 1010 so that between 0.01% and 1% of the
state space is potentially visited during the search. We started the search withc= 10.0 and
N = 0.15, the initialc and neighborhood size used in [27], and at the completion ofk = 250
iterations, we allowed eitherc or N to vary 1%, depending on which parameter we held
fixed.

For the first test, we used the logarithmic schedule in (33), that is, the algorithm did not
adjustc, but did adjustN. Table I gives the average, minimum, and maximum objective
function values obtained for the fifty trials as well as the corresponding values for the an-
nealing algorithm run according to the logarithmic schedule with no change in the parameter
N (typical SA). In each of the five cases, the average minimum found for the fifty trials
using the algorithm is as good as or better than that found by SA.

Table II gives the results of the run withN held fixed at 0.15 and withc varied by the
algorithm. As in Table I, we usedK = 106 andk = 250. The results here are similar to those
for the fixed neighborhood size, except that here the average function value obtained from
SA for function 5 is lower than that obtained using the algorithm. Unlike SA, however, the
algorithm found the minimum function value for one of the trials.

6.3. The Algorithm with Variables c and N

We next ran the algorithm allowing bothc andN to vary. For this test, we again started
with c= 10 andN = 0.15, but here, we performed 99 trials. Table III gives the results for

TABLE II

Test Problem Results withN Fixed, c Variable (106 Iterations)

f from SA f from algorithm

Function Avg Min Max Avg Min Max

1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 −0.93369 −1.03163 −0.21546 −0.95001 −1.03163 −0.21546
3 −32.564 −186.731 −7.723 −71.9194 −186.731 −38.296
4 5.17× 10−7 0.0 1.65× 10−6 1.67× 10−7 0.0 1.09× 10−6

5. 0.40768 0.043671 0.49968 0.4494 0.0 0.49999
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TABLE III

Test Problems Run with 106 Iterations; c, N Variable

f from SA f from algorithm

Function Avg Min Max Avg Min Max

1 0.397887 0.397887 0.397888 0.397887 0.397887 0.397888
2 −0.95743 −1.03163 −0.21546 −1.03163 −1.03163 −1.03163
3 −31.665 −186.731 −7.723 −67.286 −186.731 −38.286
4 5.06× 10−7 0.0 1.65× 10−6 1.95× 10−7 0.0 1.04× 10−6

5 0.405776 0.043671 0.499982 0.41006 1.14× 10−4 0.499985

106 iterations for both SA using the logarithmic schedule and for the algorithm. As in the
case whereN was held fixed (see Table II), SA had a smaller function value average for
function 5, but the algorithm found a better solution in one of the trials. In every other
case, however, the algorithm performed as well as, or better than, SA in terms of averages,
minimum values, and maximum values. The performance of the algorithm is especially
better for function 2, where the algorithm found the minimum on every trial. It is important
to note here that the choice ofk = 250 was arbitrary, yet even with the arbitrary choice,
allowingc andN to vary gave better results than typical SA.

The behavior ofc and N differs depending on the function being tested. Both behave
nonmonotonically, althoughcgenerally decreases as the number of iterations increases. The
neighborhood size does not exhibit any general upward or downward trend, but is affected
more by the type of function.

6.4. The Algorithm on Higher Dimension Problems

For the final set of results we compare the algorithm against typical SA on the six and
ten variable Griewank function [31]. These functions are highly nonconvex. Our approach
here was the same as that given in the previous three sections; i.e., we conducted 50 trials,
holding eitherc or N fixed, and then allowed both parameters to vary. We began with an
initial neighborhood size of 1 for both problems, an initialc value of 150 for the six-variable
problem, and an initialc value of 40 for the 10-variable case. We conducted 50 trials for
obtaining the starting values forc and chosec such that the initial value forc was the next
integer value greater than anyc attained for the trials. We did not investigate the reason for
the disparity between the two starting values ofc. In each of the first two tests (fixedc and
then fixedN), we ran the algorithm a total ofK = 106 iterations and allowed the parameters
to adjust 1% afterk = 750 iterations.

Table IV contains the results for the algorithm run while varyingN and adhering to the
logarithmic cooling schedule. In this instance, the average of the trials, the minimum found

TABLE IV

Griewank Function with c Fixed, N Variable (106 Iterations)

f from SA f from algorithm

Variables Avg Min Max Avg Min Max

6 1.01197 1.00195 1.02318 0.983326 0.974810 0.990232
10 1.120159 1.043276 1.940210 1.023717 1.003709 1.045056
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TABLE V

Griewank Function with N Fixed, c Variable (106 Iterations)

f from SA f from algorithm

Variables Avg Min Max Avg Min Max

6 1.01197 1.00195 1.02318 0.969481 0.964264 0.971445
10 1.120159 1.043276 1.940210 1.002638 1.000173 1.00413

over the trials, and the maximum found over the trials are all lower for the algorithm than
for typical SA. For the 50 trials represented in Table IV the neighborhood sizes ranged from
the starting value of 1.0 up to a maximum of 3.04.

Table V gives the results of the algorithm run while varyingc and holdingN fixed. Here
again, each of the quantities is lower for the algorithm than it is for SA. For these trials,c
had as its maximum its starting value of either 150 for the six-variable case or 40 for the
10-variable case, and a minimum of 0.01 in both cases. The results shown in Tables IV and
V indicate that varying only one of the parameters while holding the other fixed leads to
better solutions to large problems than does typical SA.

Table VI gives the results for the case where the algorithm adjusts bothc and N. The
average value obtained for both the 6- and 10-variable cases are lower than for SA, the
algorithm withc fixed, and the algorithm withN fixed.

7. CONCLUSIONS

We have shown that dynamic adjustment of the SA parametersc and N can result in
obtaining better solutions than using a typical SA-cooling schedule with a fixed neighbor-
hood size. We have used a lumped form of the underlying transition probability matrix to
determine these parameters and then adjusted the parameters after evaluating the expected
hitting time. This approach provides an advantage over typical SA in that it maintains some
information of the problem in the form of the lumped matrix. To implement our technique
fully, several other areas require further study. We arbitrarily select the starting neighbor-
hood size,N, the number of iterationsk between the adjustment of the parameters, and the
values for the incremental changes toc and N. An analytical approach to selecting these
parameters could lead to an acceleration of the attainment of the global minima. We do not
discuss stopping criteria but, instead, demonstrate that, over a fixed number of iterations,
the algorithm obtains better solutions on average than SA.

TABLE VI

Griewank Function with c, N Variable (106 Iterations)

f from SA f from algorithm

Variables Avg Min Max Avg Min Max

6 1.01197 1.00195 1.02318 0.969295 0.965595 0.972565
10 1.120159 1.043276 1.940210 1.002377 1.000672 1.00413
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APPENDIX

1. Branin RCOS,

f (x1, x2) = a
(
x2 − bx2

1 + cx1 − d
)2 + e(1 − f ) cos(x1) + e,

where −5≤ x1 ≤ 10, 0≤ x2 ≤ 15, a = 1, b= 5.1/(4π)2, c= 5/π , d = 6, e= 10, f =
1/(8π).

2. 2D six-hump camel back,

f (x1, x2) = (
4 − 2.1x2

1 + x4
1

/
3
)
x2

1 + x1x2 + (−4 + 4x2
2

)
x2

2,

where−3≤ x1 ≤ 3, −2≤ x2 ≤ 2.
3. 2D Shubert,

f (x1, x2) =
5∑

i =1

i cos[(i + 1)x1 + i ]
5∑

i =1

i cos[(i + 1)x2 + i ],

where−10≤ x1 ≤ 10, −10≤ x2 ≤ 10.
4. F2,

f (x1, x2) = 100
(
x2

1 − x2
)2 + (1 − x1)

2,

where−2.048≤ xi ≤ 2.047.
5. F8 (Griewank),

g(x) = 1 +
N∑

i =1

x2
i

4000
−

N∏
i =1

cos

(
xi√

i

)
,

where−512≤ xi ≤ 511.
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